Efficient techniques for model checking: Symbolic techniques (ROBDD)

dr. István Majzik
dr. András Pataricza dr. Tamás Bartha

BME Department of Measurement and Information System

Where are we?

- Lower-level formalisms (KS, LTS, KTS)
- Higher-level formalisms

> Temporal logics: PLTL, CTL, CTL*

Formalized requirements

Model checker

Counterexample

Recap: Known techniques for model checking

- PLTL model checking:
- Tableau method: Decomposition based on the model

- Automata-based approach (auxiliary)
- CTL model checking:
- Semantics-based approach: Iterative labeling of states

Recap: CTL model checking with state labeling

- Label states with subformulas based on Sat(..) computation:
$A F(P \wedge E(Q U R))$
- State labeling: Where does a formula hold?
- Initially: KS labeled with atomic propositions
- Iteratively: Labeling with more complex formulas
- If a state is labeled with p and q , then we can label with $\neg p, p \wedge q, E X p, A X p, E(p \cup q), A(p \cup q)$
- Incremental labeling algorithm based on the semantics of operators

Recap: Iteration of the $\mathrm{E}(\mathrm{P} \cup \mathrm{Q})$ labeling

Kripke structure with initial labeling

- Exploiting:
$E(P \cup Q)=$
$Q \vee(P \wedge E X E(P \cup Q))$
- Iteration continues while set of states grows (until a fixed point is reached)

Problems

- The state space to traverse can be huge
- Concurrent systems exhibit a large state space: Combinatorical explosion in the number of possible interleavings of independent sequences

- How can we analyze large state spaces?
- Promise: CTL model checking: 10^{20}, sometimes even 10^{100} states
- What kind of technique can deliver this promise?

Outlook: Concurrent behavior of two automata

Direct product of automata, interleaving, synchronization

Example: Operation of asynchronous automata

- System composed of two (independent) automata

- States of the automata:

$$
A=\left\{m_{1}, m_{2}\right\}, B=\left\{s_{1}, s_{2}\right\}
$$

- (Direct) product automaton: state space of the system

C

- Set of states:
$C=A \times B$
$C=\left\{m_{1} s_{1}, m_{1} s_{2}, m_{2} s_{1}, m_{2} s_{2}\right\}$

Synchronizations and guards simplify the model

- Synchronization: taking the transitions at the same time

- E.g. "A and B takes the transition at the same time if their state index is the same"
- Guards: disable certain transitions

- E.g. "B can only take the transition if A is in state $m_{2}{ }^{\prime \prime}$

Example: Pedestrian light with button

Example: Alternative paths

Example for large state space: Dining philosophers

- Concurrent system
- May have deadlock
- May have livelock
- State space grows fast

\#Philosophers	\#States
16	$4,7 \cdot 10^{10}$
28	$4,8 \cdot 10^{18}$
\ldots	\ldots
200	$>10^{40}$
1000	$>10^{200}$
\ldots	\ldots

$$
2^{64}=1,8 \cdot 10^{19}
$$

Overview of the techniques to learn

- CTL model checking: Symbolic technique

Semantics-based technique	Symbolic technique
Sets of labeled states	Characteristic functions (Boolean functions): ROBDD representation
Operations on sets of states	Efficient operations on ROBDDs

- Model checking of invariants: Bounded model checking
- Searching satisfying valuations for Boolean fordmulas with SAT techniques
- Model checking to a given depth: Searching for counterexamples with bounded length
- A detected counterexample is always valid
- No counterexamples does not imply correctness

Symbolic model checking

Recap: Iteration using set operations

- We expand the labeling using operations on sets
- Initial set: states already labeled by subformulas
- Expanding the labeling:
- $\mathrm{E}(\mathrm{p} \cup \mathrm{q})$: "At least one successor is labeled ..."
- A(p U q): "All successors are labeled ..."
- This way we can label preceding states
- How can we define the set of preceding states?
- Based on set of already labeled states Z:
$\operatorname{pre}_{\mathrm{E}}(Z)=\left\{s \in S \mid\right.$ there exists s^{\prime} such that $\left(\mathrm{s}, \mathrm{s}^{\prime}\right) \in R$ and $\left.\mathrm{s}^{\prime} \in \mathrm{Z}\right\}$

At least one successor is labeled

- Initial set: $Z_{0}=\{s \mid Q \in L(s)\}$
- Expansion: $Z_{i+1}=Z_{i} \cup\left(\operatorname{pre}_{\mathrm{E}}\left(\mathrm{Z}_{\mathrm{i}}\right) \cap\{\mathrm{s} \mid \mathrm{P} \in \mathrm{L}(\mathrm{s})\}\right)$

Labeled so far
Predecessors of already labeled states

Main idea

- Representation of and operations on sets of states: With Boolean functions instead of enumeration
- Encoding a state with a bit-vectors
- To encode a set of states S we need at least $n=\left\lceil\log _{2}|S|\right\rceil$ bits, so choose n such that $2^{n} \geq|S|$
- Encoding a set of states with an n-ary Boolean function: Characteristic function
- The function should be true for a bit-vector iff the state encoded by the bit-vector is in the given set of states
- Characteristic function: $\mathrm{C}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$
- We will perform operations on characteristic functions instead of sets

Characteristic functions

- For a state s: $\mathrm{C}_{\mathrm{s}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$

Let the encoding of s be the bit-vector $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$, where $u_{i} \in\{0,1\}$ Goal: $C_{s}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ should return be true only for $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$
Construction of $C_{s}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: with operator \wedge

- x_{i} is an operand if $u_{i}=1$
- $\neg x_{i}$ is an operand if $u_{i}=0$

Example: for state s with encoding $(0,1): C_{s}\left(x_{1}, x_{2}\right)=\neg x_{1} \wedge x_{2}$

- For a set of state $Y \subseteq S: C_{Y}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Goal: $C_{Y}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ should be true for parameters $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$
iff $\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in Y$
Construction of $\mathrm{C}_{Y}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$:

$$
C_{Y}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=V_{s \in Y} C_{s}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- For sets of states in general:

$$
C_{Y \cup W}=C_{Y} \vee C_{W} \quad C_{Y \cap W}=C_{Y} \wedge C_{W}
$$

Example: Characteristic function of states

Variables: x, y

Characteristic functions of states: State s1:

$$
\mathrm{C}_{\mathrm{s} 1}(\mathrm{x}, \mathrm{y})=(\neg \mathrm{x} \wedge \neg \mathrm{y})
$$

State s2:

$$
C_{s 2}(x, y)=(\neg x \wedge y)
$$

State s3:

$$
C_{s 3}(x, y)=(x \wedge y)
$$

Characteristic function for a set of states: Set of states $\{s 1, s 2\}$:

$$
C_{\{s 1, s 2\}}=C_{s 1} \vee C_{s 2}=(\neg x \wedge \neg y) \vee(\neg x \wedge y)
$$

Characteristic functions (cont'd)

- For state transitions: C_{r}

$r=(s, t)$ transition, where $s=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $t=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$
- Characteristic function in the form $\mathrm{C}_{\mathrm{r}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{1}^{\prime}, \mathrm{x}_{2}^{\prime}, \ldots, \mathrm{x}_{\mathrm{n}}^{\prime}\right)$
- „Primed" variables denote the target state

Goal: C_{r} should be true iff $x_{i}=u_{i}$ and $x_{i}^{\prime}=v_{i}$
Construction of C_{r} :

$$
C_{r}=C_{s}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \wedge C_{t}\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

Example: Characteristic functions of transitions

$(0,0)$

$(1,1)$

State s1:

$$
\mathrm{C}_{\mathrm{s} 1}(\mathrm{x}, \mathrm{y})=(\neg \mathrm{x} \wedge \neg \mathrm{y})
$$

State s2:

$$
C_{s 2}(x, y)=(\neg x \wedge y)
$$

Transition (s1,s2) \in R:

$$
C_{(s 1, s 2)}=(\neg x \wedge \neg y) \wedge\left(\neg x^{\prime} \wedge y^{\prime}\right)
$$

Transition relation:

$$
\begin{aligned}
R\left(x, y, x^{\prime}, y^{\prime}\right) & =\left(\neg x \wedge \neg y \wedge \neg x^{\prime} \wedge y^{\prime}\right) \vee \\
& \vee\left(\neg x \wedge y \wedge x^{\prime} \wedge y^{\prime}\right) \vee \\
& \vee\left(x \wedge y \wedge \neg x^{\prime} \wedge y^{\prime}\right) \vee \\
& \vee\left(x \wedge y \wedge \neg x^{\prime} \wedge \neg y^{\prime}\right)
\end{aligned}
$$

Characteristic functions (cont'd)

- Construction of $\operatorname{pre}_{\mathrm{E}}(\mathrm{Z}): \operatorname{pre}_{\mathrm{E}}(\mathrm{Z})=\{\mathrm{s} \mid \exists \mathrm{t}:(\mathrm{s}, \mathrm{t}) \in \mathrm{R}$ and $\mathrm{t} \in \mathrm{Z}\}$ Representation of Z : C_{Z}
Representation of R : $C_{R}=V_{r \in R} C_{r}$
$\operatorname{pre}_{\mathrm{E}}(Z)$: find predecessor states for states of Z

$$
C_{\operatorname{pre}_{\mathrm{E}}(Z)}=\exists_{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime} n} C_{R} \wedge C_{Z}^{\prime}
$$

where $\exists_{x} \mathrm{C}=\mathrm{C}[1 / \mathrm{x}] \vee \mathrm{C}[0 / \mathrm{x}]$ (,existential abstraction")

- Model checking with set operations: reduced to operations with Boolean functions!
- Union of sets: Disjunction of functions (\vee)
- Intersectin of sets: Conjunction of functions (\wedge)
- Construction of $\operatorname{pre}_{\mathrm{E}}(\mathrm{Z})$: Complex operation (existential abstraction)

Representation of Boolean functions

Canonic form: ROBDD
Reduced, Ordered Binary Decision Diagram
"Phases" (overview):

- Binary decision tree: to represent binary decisions
- BDD: identical subtrees are merged
- OBDD: evaluation of variables in the same order on every branch
- ROBDD: reduction of redundant nodes
- If both two outcomes (branches) lead to the same node

ROBDDs in detail

Binary decision trees

- Final result is determined by a series of decisions
- Binary decisions in every node
- Yes/No branches
- Final result after every necessary decision has been made:
- Yes (1) / No (0)

There are multivalued

extensions

Boolean functions as binary decision trees

- Substitution (valuation) of a variable is a decision
- Notation: if-then-else

$$
x \rightarrow f_{1}, f_{0}=\left(x \wedge f_{1}\right) \vee\left(\neg x \wedge f_{0}\right)
$$

- The result is the value of f_{1} if x is true (1)
- The result is the value of f_{0} if x is false (0)
- x is the test variable, checking its value is a test
- Shannon decomposition of Boolean functions:
- The function is decomposed with if-then-else
- The test variable is reduced, will not appear in $f_{x}, f_{\underline{x}}$
- Repeat until there is a variable left

Types of decision trees

Example:

$$
f(x, y)
$$

Potential values of $f(x, y)$ should be specified in the boxes (leaf/terminal nodes)

- We get a binary decision diagram (BDD), if we merge all identical subtrees
- We get an ordered binary decision diagram (OBDD), if we use test variables in the same order during decomposition
- We get a reduced ordered binary decision diagram (ROBDD), if we remove redundant nodes (where both decisions lead to the same node)

Example:

Transformation of a binary decision diagram

ROBDD properties

- Directed, acyclic graph with one root and two leaves
- Values of the two leaves are 1 and 0 (true and false)
- Every node is assigned a test variable
- From every node, two edges leave
- One for the value 0 (notation: dashed arrow)
- The other for the value 1 (notation: solid arrow)
- On every path, test variables are in the same order
- Isomorphic subgraphs are merged
- Nodes from with both edges would point to the same node are reduced
For a given function, two ROBDDs with the same variable ordering are isomorphic

Variable ordering for ROBDDs

- Size of ROBDD
- For some functions (e.g. even number of 1's) very compact
- For others (such as XOR) it may have an exponential size
- The order of variables has a great impact on the size!
- A different order may cause an order of magnitude difference
- Problem of finding an optimal ordering is NP-complete (\rightarrow heuristics)
- Memory requirements: If the ROBDD is built by combining functions one by one, we will store intermediate nodes which can be reduced later

Example: Manual construction of an ROBDD

Let

$$
f=(a \Leftrightarrow b) \wedge(c \Leftrightarrow d)
$$

Variable ordering: a, b, c, d

- $f=a \rightarrow f_{a}, f_{a}$

$$
f_{a}=(1 \Leftrightarrow b) \wedge(c \Leftrightarrow d), f_{a}=(0 \Leftrightarrow b) \wedge(c \Leftrightarrow d)
$$

- $f_{a}=b \rightarrow f_{a, b} f_{a, \underline{b}}$

$$
\begin{aligned}
\mathrm{f}_{\mathrm{a}, \mathrm{~b}} & =(1 \Leftrightarrow 1) \wedge(\mathrm{c} \Leftrightarrow \mathrm{~d})=(\mathrm{c} \Leftrightarrow \mathrm{~d}) \\
\mathrm{f}_{\mathrm{a}, \mathrm{~b}} & =(1 \Leftrightarrow 0) \wedge(\mathrm{c} \Leftrightarrow \mathrm{~d})=0 \\
\text { - } \mathrm{f}_{\underline{a}}=\mathrm{b} & =\mathrm{f}_{\underline{a}, \mathrm{~b}} \mathrm{f}_{\underline{a}, \underline{b}}
\end{aligned}
$$

$$
\begin{aligned}
& f_{a, b}=(0 \Leftrightarrow 1) \wedge(c \Leftrightarrow d)=0 \\
& f_{a, b}=(0 \Leftrightarrow 0) \wedge(c \Leftrightarrow d)=(c \Leftrightarrow d)
\end{aligned}
$$

- $\mathrm{f}_{\mathrm{a}, \mathrm{b}}=\mathrm{c} \rightarrow \mathrm{f}_{\mathrm{a}, \mathrm{b}, \mathrm{c},} \mathrm{f}_{\mathrm{a}, \mathrm{b}, \mathrm{c}}$

$$
f_{a, b, c}=(1 \Leftrightarrow d), f_{a, b, c, c}=(0 \Leftrightarrow d)
$$

- $f_{a, b, c}=d \rightarrow f_{a, b, c, d} f_{a, b, c, d}$
$\mathrm{f}_{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}}=(1 \Leftrightarrow 1)=1$,

$$
f_{a, b, c, \mathrm{~d}}=(1 \Leftrightarrow 0)=0
$$

- $f_{a, b, c}=d \rightarrow f_{a, b, c, d} f_{a, b, c, c, d}$

$$
f_{a, b, c, c, d}=(0 \Leftrightarrow 1)=0, f_{a, b, c, d}=(0 \Leftrightarrow 0)=1
$$

Storing an ROBDD in memory

\mathbf{u}	\mathbf{i}	\mathbf{l}	\mathbf{h}
$\mathbf{0}$			
$\mathbf{1}$			
$\mathbf{2}$	4	1	0
$\mathbf{3}$	4	0	1
$\mathbf{4}$	3	2	3
$\mathbf{5}$	2	4	0
$\mathbf{6}$	2	0	4
$\mathbf{7}$	1	5	6

Storing an ROBDD in memory

Auxiliary

\mathbf{u}	\mathbf{i}	\mathbf{I}	\mathbf{h}
$\mathbf{0}$			
$\mathbf{1}$			
$\mathbf{2}$	4	1	0
$\mathbf{3}$	4	0	1
$\mathbf{4}$	3	2	3
$\mathbf{5}$	2	4	0
$\mathbf{6}$	2	0	4
$\mathbf{7}$	1	5	6

Handling ROBDDs 1.

Auxiliary

- Defined operations:
- init(T)
- Initializes table T
- Only the terminal nodes 0 and 1 are in the table
- $\operatorname{add}(\mathrm{T}, \mathrm{i}, \mathrm{l}, \mathrm{h}): \mathrm{u}$
- Creates a new node in T with the provided parameters
- Returns its index u
- var(T,u):i
- Returns from T the index i of the node u
- low(T,u):I and high(T,u):h
- Returns the index I (or h) of the node reachable from the node with index u through the edge corresponding to 0 (or 1)

Handling ROBDDs 2.

- To look up ROBDD nodes, we use another table H: $(\mathrm{i}, \mathrm{l}, \mathrm{h}) \rightarrow \mathrm{u}$
- Operations:
- init(H)
- Initializes an empty H
- member(H,i,l,h):t
- Checks if the triple ($\mathrm{i}, \mathrm{l}, \mathrm{h}$) is in H ; t is a Boolean value
- lookup(H,i,l,h):u
- Looks up the triple (i,l,h) from table H
- Returns the index u of the matching node
- insert(H,i,l,h,u)
- Inserts a new entry into the table

Handling ROBDDs 3.

Creating nodes: $\mathrm{Mk}(\mathrm{i}, \mathrm{l}, \mathrm{h})$

- Where i is the index of variable, I and h are the branches
- If I=h, i.e. the branches would lead to the same node
- then we don't need new a node
- we can return any branch
- If H already contains a triple (i,l,h)
- then we don't need a new node
\Rightarrow There exists an isomorphic subtree, return that

```
Mk (i,l,h) {
    if l=h then
        return l;
    else if member(H,i,l,h) then
        return lookup(H,i,l,h);
    else {
        u=add(T,i,l,h);
        insert(H,i,l,h,u);
        return u;
    }
}
```

- If H does not contain such a triple (i,l,h)
- then we need to create it and return its index

Handling ROBDDs 4.

Auxiliary

Building an ROBDD: Build(f) and Build'(t, i) recursive helper function

B $\}$

Build' (t,i) \{
if i>n then

if $t==$ false then return 0 else return 1
else \{v0 $=$ Build' $\left(t\left[0 / x_{i}\right], i+1\right)$;
$\mathrm{v} 1=\mathrm{Build}{ }^{\prime}\left(\mathrm{t}\left[1 / \mathrm{x}_{\mathrm{i}}\right], i+1\right)$;
return $\mathrm{Mk}(\mathrm{i}, \mathrm{v} 0, \mathrm{v} 1)\}$

Recursive building;
Mk() will check isomorphic subtrees

Operations on ROBDDs

- Boolean operators can be evaluated directly on ROBDDs
- Variables of the functions should be the same in the same order
- Equivalence for functions f, t (op is a Booleean operator):

1. f op $t=\left(x \rightarrow f_{x}, f_{\underline{x}}\right)$ op $\left(x \rightarrow t_{x}, t_{\underline{x}}\right)=x \rightarrow\left(f_{x}\right.$ op $\left.t_{x}\right)$, $\left(f_{\underline{x}} \circ p t_{\underline{x}}\right)$
op

Operations on ROBDDs (cont'd)

- Boolean operators can be evaluated directly on ROBDDs
- Variables of the functions should be the same in the same order
- Equivalence for functions f, t (op is a Booleean operator):

1. f op $t=\left(x \rightarrow f_{x,} f_{\underline{x}}\right)$ op $\left(x \rightarrow t_{x}, t_{\underline{x}}\right)=x \rightarrow\left(f_{x}\right.$ op $\left.t_{x}\right),\left(f_{\underline{x}}\right.$ op $\left.t_{\underline{x}}\right)$

- Additional rules (missing variables due to reduction):

2. f op $t=\left(x \rightarrow f_{x} f_{\underline{x}}\right)$ op $t=x \rightarrow\left(f_{x}\right.$ op $\left.t\right),\left(f_{\underline{x}}\right.$ op $\left.t\right)$
3. f op $t=f$ op $\left(x \rightarrow t_{x}, t_{\underline{x}}\right)=x \rightarrow\left(f o p t_{x}\right)$, (fop $\left.t_{\underline{x}}\right)$

- Based on these rules App(op,i,j) can be defined recursively
- where i, j : indices of the root nodes of operands
- Drawback: slow
- worst-case 2^{n} exponential

Accelerated operation

Auxiliary

- Let $\mathrm{G}(\mathrm{op}, \mathrm{i}, \mathrm{j})$ be a cache table that contains the results of App(op,i,j) (these are nodes)
- The four cases of the algorithm:
- Both nodes are terminal: return a terminal based on the Boolean operation (e.g. $0 \wedge 1=0$)
- If the variable indices for both operands are the same, then call App(op,i,j) with the 0 branches and with the 1 one branches based on equivalence 1.
- If one variable index is less, then that node is paired with the 0 and 1 branches of the other based on equivalence 2 . or 3 .

Pseudo-code of the operation

Auxiliary

```
Apply(op,f,t) {
    init(G);
    return App(op,f,t);
}
App(op,u1,u2) {
    if (G(op,u1,u2) != empty) then return G(op,u1,u2);
    else if (u1 in {0,1} and u2 in {0,1}) then u = op(u1,u2);
    else if (var(u1) = var(u2)) then
        u=Mk (var(u1), App (op,low(u1),low(u2)),
                App(op,high(u1),high(u2)));
    else if (var(u1) < var(u2)) then
        u=Mk (var(u1), App(op,low(u1),u2),App(op,high(u1),u2));
    else (* if (var(u1) > var(u2)) then *)
        u=Mk (var(u2), App (op,u1,low(u2)),App (op,u1,high(u2)));
    G(op,u1,u2)=u;
    return u;
}
```


Example: Performing operation (f^t)

Example: Performing operation ($f \wedge t$)
t

Example: Result of operation (f^t)

Restricting a variable in an ROBDD

Bind variables with constants (e.g. $\left.(\neg x \wedge y)^{[y=1]}=\neg x\right)$:
The value of x_{j} should be b in the ROBDD rooted in u

```
Restrict(u,j,b) {
    return Res(u,j,b);
}
Res(u,j,b) {
    if var(u) > j then return u;
    else if var(u) < j then
        return Mk(var(u),
                    Res(low (u), j,b),
                    Res(high(u),j,b)) ;
    else
        if b=0 then
        return Res(low(u),j,b)
        else
            return Res(high(u),j,b) ;
}
```


Summary: Model checking with ROBDDs

- Realizing model checking:
- Model checking algorithm: Operations on sets of states (labeling)
- Symbolic technique: Instead of sets, use Boolean characteristic functions
- Efficient implementation: Boolean functions handled as ROBDDs
- Benefits
- ROBDD is a canonical form (equivalence of functions is easy to check)
- Algorithms can be accelerated (with caching)
- Reduced storage requirements (depends on variable ordering!)

Dining philosophers:

Number of Philosophers	Size of state space	Number of ROBDD nodes
16	$4,7 \cdot 10^{10}$	747
28	$4,8 \cdot 10^{18}$	1347

Instead of storing 10^{18} states the ROBDD takes ~21kB!

