Efficient techniques for model checking: Symbolic techniques (ROBDD)

dr. István Majzik dr. András Pataricza dr. Tamás Bartha

BME Department of Measurement and Information System

Where are we?

Recap: Known techniques for model checking

- PLTL model checking:
 - Tableau method: Decomposition based on the model

- Automata-based approach (auxiliary)
- CTL model checking:
 - Semantics-based approach: Iterative labeling of states

Recap: CTL model checking with state labeling

 Label states with subformulas based on Sat(..) computation: AF (P ^ E (Q U R))

- State labeling: Where does a formula hold?
 - Initially: KS labeled with atomic propositions
 - Iteratively: Labeling with more complex formulas
 - If a state is labeled with p and q, then we can label with $\neg p$, p $\land q$, EX p, AX p, E(p U q), A(p U q)
 - Incremental labeling algorithm based on the semantics of operators

Recap: Iteration of the E(P U Q) labeling

Problems

- The state space to traverse can be huge
 - Concurrent systems exhibit a large state space: Combinatorical explosion in the number of possible interleavings of independent sequences

- How can we analyze large state spaces?
 - Promise: CTL model checking: 10²⁰, sometimes even 10¹⁰⁰ states
 - What kind of technique can deliver this promise?

Outlook: Concurrent behavior of two automata

Direct product of automata, interleaving, synchronization

Example: Operation of asynchronous automata

• System composed of two (independent) automata

States of the automata:
 A = {m₁, m₂}, B = {s₁, s₂}

• (Direct) product automaton: state space of the system

- Set of states:
 - $C = A \times B$
 - $C = \{m_1s_1, m_1s_2, m_2s_1, m_2s_2\}$

Synchronizations and guards simplify the model

- Synchronization: taking the transitions at the same time
 - m_1s_1 m_2s_1 C' m_1s_2 m_2s_2
- Guards: disable certain transitions

- E.g. "A and B takes the transition at the same time if their state index is the same"
- E.g. "B can only take the transition if A is in state m₂"

Example: Pedestrian light with button

Example for large state space: Dining philosophers

- Concurrent system
 - May have deadlock
 - May have livelock
- State space grows fast

#Philosophers	#States
16	4,7 · 10 ¹⁰
28	4,8 · 10 ¹⁸
200	> 10 ⁴⁰
1000	> 10 ²⁰⁰

$$2^{64} = 1,8 \cdot 10^{19}$$

With smart (but not task-specific) state space representation: ~100 000 philosophers, i.e. 10⁶²⁹⁰⁰ states can be checked!

Overview of the techniques to learn

• CTL model checking: Symbolic technique

Semantics-based technique	Symbolic technique
Sets of labeled states	Characteristic functions (Boolean functions): ROBDD representation
Operations on sets of states	Efficient operations on ROBDDs

- Model checking of invariants: Bounded model checking
 - Searching satisfying valuations for Boolean fordmulas with SAT techniques
 - Model checking to a given depth: Searching for counterexamples with bounded length
 - A detected counterexample is always valid
 - No counterexamples does not imply correctness

Symbolic model checking

Recap: Iteration using set operations

- We expand the labeling using operations on sets
 - Initial set: states already labeled by subformulas
 - Expanding the labeling:
 - E(p U q): "At least one successor is labeled ..."
 - A(p U q): "All successors are labeled ..."
 - This way we can label preceding states
- How can we define the set of preceding states?
 - Based on set of already labeled states Z:
 - $pre_{E}(Z) = \{s \in S \mid \text{there exists s' such that } (s,s') \in R \text{ and } s' \in Z\}$ $pre_{A}(Z) = \{s \in S \mid \text{for all s' such that } (s,s') \in R \text{ we have } s' \in Z\}$
- Example: E(P U Q):
 - Initial set: $Z_0 = \{s \mid Q \in L(s)\}$

Labeled so far

• Expansion: $Z_{i+1} = Z_i \cup (pre_E(Z_i) \cap \{s \mid P \in L(s)\})$

Predecessors of already labeled states

labeled P

End of the iteration: if Z_{i+1} = Z_i (fixedpoint)

At least one successor is

labeled

All successors

are labeled

Main idea

- Representation of and operations on sets of states: With Boolean functions instead of enumeration
 - Encoding a state with a bit-vectors
 - To encode a set of states S we need at least n= log₂|S| bits, so choose n such that 2ⁿ≥|S|
 - Encoding a set of states with an n-ary Boolean function: Characteristic function
 - The function should be true for a bit-vector *iff* the state encoded by the bit-vector is in the given set of states
 - Characteristic function: C: $\{0,1\}^n \rightarrow \{0,1\}$
 - We will perform operations on characteristic functions instead of sets

Characteristic functions

• For a state s: C_s(x₁, x₂, ..., x_n)

Let the encoding of s be the bit-vector $(u_1, u_2, ..., u_n)$, where $u_i \in \{0, 1\}$ Goal: $C_s(x_1, x_2, ..., x_n)$ should return be true only for $(u_1, u_2, ..., u_n)$ Construction of $C_s(x_1, x_2, ..., x_n)$: with operator \land

- x_i is an operand if u_i=1
- $\neg x_i$ is an operand if $u_i=0$

Example: for state s with encoding (0,1): $C_s(x_1, x_2) = \neg x_1 \land x_2$

• For a set of state $Y \subseteq S: C_Y(x_1, x_2, ..., x_n)$ Goal: $C_Y(x_1, x_2, ..., x_n)$ should be true for parameters $(u_1, u_2, ..., u_n)$ iff $(u_1, u_2, ..., u_n) \in Y$ Construction of $C_Y(x_1, x_2, ..., x_n)$:

$$C_{Y}(x_{1}, x_{2}, ..., x_{n}) = \bigvee_{s \in Y} C_{s}(x_{1}, x_{2}, ..., x_{n})$$

• For sets of states in general:

 $C_{Y \cup W} = C_Y \vee C_W, \qquad C_{Y \cap W} = C_Y \wedge C_W$

Example: Characteristic function of states

Variables: x, y

Characteristic functions of states: State s1: $C_{s1}(x,y) = (\neg x \land \neg y)$ State s2: $C_{s2}(x,y) = (\neg x \land y)$ State s3:

$$C_{s3}(x,y) = (x \land y)$$

Characteristic function for a set of states: Set of states {s1,s2}: $C_{\{s1,s2\}} = C_{s1} \lor C_{s2} = (\neg x \land \neg y) \lor (\neg x \land y)$

Characteristic functions (cont'd)

• For state transitions: C_r

r=(s,t) transition, where $s=(u_1, u_2, ..., u_n)$ and $t=(v_1, v_2, ..., v_n)$

- Characteristic function in the form C_r(x₁, x₂, ..., x_n, x'₁, x'₂, ..., x'_n)
 - "Primed" variables denote the target state
 Goal: C_r should be true *iff* x_i=u_i and x_i'=v_i
 Construction of C_r:

$$C_r = C_s(x_1, x_2, ..., x_n) \land C_t(x'_1, x'_2, ..., x'_n)$$

Example: Characteristic functions of transitions

State s1:

State s2:

$$C_{s1}(x,y) = (\neg x \land \neg y)$$
$$C_{s2}(x,y) = (\neg x \land y)$$

Transition (s1,s2) \in R: $C_{(s1,s2)} = (\neg x \land \neg y) \land (\neg x' \land y')$

Transition relation: $R(x,y,x',y') = (\neg x \land \neg y \land \neg x' \land y') \lor \\ \lor (\neg x \land y \land \neg x' \land y') \lor \\ \lor (x \land y \land \neg x' \land y') \lor \\ \lor (x \land y \land \neg x' \land y') \lor$

Characteristic functions (cont'd)

• Construction of $pre_E(Z)$: $pre_E(Z)=\{s \mid \exists t: (s,t) \in R \text{ and } t \in Z\}$ Representation of Z: C_Z Representation of R: $C_R = \bigvee_{r \in R} C_r$

pre_E(Z): find predecessor states for states of Z

$$C_{\operatorname{pre}_{\mathrm{E}}(Z)} = \exists_{x'_{1}, x'_{2}, \dots, x'_{n}} C_{R} \wedge C_{Z}'$$

where $\exists_x C = C[1/x] \lor C[0/x]$ ("existential abstraction")

- Model checking with set operations: reduced to operations with Boolean functions!
 - Union of sets: Disjunction of functions (v)
 - Intersectin of sets: Conjunction of functions (^)
 - Construction of pre_E(Z): Complex operation (existential abstraction)

Representation of Boolean functions

Canonic form: ROBDD Reduced, Ordered Binary Decision Diagram

"Phases" (overview):

- Binary decision tree: to represent binary decisions
- BDD: identical subtrees are merged
- OBDD: evaluation of variables in the same order on every branch
- ROBDD: reduction of redundant nodes
 - If both two outcomes (branches) lead to the same node

ROBDDs in detail

Binary decision trees

- Final result is determined by a series of decisions
- Binary decisions in every node
 - Yes/No branches
- Final result after every necessary decision has been made:
 - Yes (1) / No (0)

There are multivalued extensions

Boolean functions as binary decision trees

- Substitution (valuation) of a variable is a decision
- Notation: if-then-else

$$x \rightarrow f_1, f_0 = (x \land f_1) \lor (\neg x \land f_0)$$

- The result is the value of f₁ if x is true (1)
- The result is the value of f₀ if x is false (0)
- x is the test variable, checking its value is a test
- Shannon decomposition of Boolean functions:

$$\begin{cases} f = x \rightarrow f[1/x], f[0/x] \\ \text{let } f_x = f[1/x]; f_{\underline{x}} = f[0/x] \end{cases} \ f = x \rightarrow f_x, f_{\underline{x}} \end{cases}$$

- The function is decomposed with if-then-else
- The test variable is reduced, will not appear in f_x , $f_{\underline{x}}$
- Repeat until there is a variable left

Types of decision trees

Example:

f(x,y)

Potential values of f(x,y) should be specified in the boxes (leaf/terminal nodes)

- We get a binary decision diagram (BDD), if we merge all identical subtrees
- We get an ordered binary decision diagram (OBDD), if we use test variables in the same order during decomposition
- We get a reduced ordered binary decision diagram (ROBDD), if we remove redundant nodes (where both decisions lead to the same node)

Example: Transformation of a binary decision diagram

ROBDD properties

- Directed, acyclic graph with one root and two leaves
 - Values of the two leaves are 1 and 0 (true and false)
 - Every node is assigned a test variable
- From every node, two edges leave
 - One for the value
 0 (notation: dashed arrow)
 - The other for the value 1 (notation: solid arrow)
- On every path, test variables are in the same order
- Isomorphic subgraphs are merged
- Nodes from with both edges would point to the same node are reduced
- For a given function, two ROBDDs with the same variable ordering are isomorphic

Variable ordering for ROBDDs

• Size of ROBDD

- For some functions (e.g. even number of 1's) very compact
- For others (such as XOR) it may have an exponential size
- The order of variables has a great impact on the size!
 - A different order may cause an order of magnitude difference
 - Problem of finding an optimal ordering is NP-complete (→heuristics)
- Memory requirements: If the ROBDD is built by combining functions one by one, we will store intermediate nodes which can be reduced later

Example: Manual construction of an ROBDD

Let

 $f = (a \Leftrightarrow b) \land (c \Leftrightarrow d)$ Variable ordering: a, b, c, d

•
$$f = a \rightarrow f_{a'} f_{\underline{a}}$$

 $f_{a} = (1 \Leftrightarrow b) \land (c \Leftrightarrow d), f_{\underline{a}} = (0 \Leftrightarrow b) \land (c \Leftrightarrow d)$
• $f_{a} = b \rightarrow f_{a,b'}, f_{\underline{a},\underline{b}}$
 $f_{a,\underline{b}} = (1 \Leftrightarrow 1) \land (c \Leftrightarrow d) = (c \Leftrightarrow d)$
 $f_{\underline{a},\underline{b}} = (1 \Leftrightarrow 0) \land (c \Leftrightarrow d) = 0$
 $f_{\underline{a},\underline{b}} = (1 \Leftrightarrow 0) \land (c \Leftrightarrow d) = 0$
 $f_{\underline{a},\underline{b}} = (0 \Rightarrow 1) \land (c \Leftrightarrow d) = 0$
 $f_{\underline{a},\underline{b}} = (0 \Leftrightarrow 0) \land (c \Leftrightarrow d) = 0$
 $f_{\underline{a},\underline{b}} = (0 \Leftrightarrow 0) \land (c \Leftrightarrow d) = (c \Rightarrow d)$
• $f_{a,\underline{b},\underline{c}} = (1 \Leftrightarrow d), f_{\underline{a},\underline{b},\underline{c}} = (0 \Leftrightarrow d)$
• $f_{a,b,c} = d \rightarrow f_{\underline{a},b,c,d'}, f_{\underline{a},b,c,d}$
 $f_{\underline{a},b,c,d} = (1 \Leftrightarrow 1) = 1,$
 $f_{\underline{a},b,c,d} = (1 \Leftrightarrow 1) = 1,$
 $f_{\underline{a},b,c,d} = (1 \Leftrightarrow 0) = 0$
• $f_{\underline{a},b,c,d} = (1 \Leftrightarrow 0) = 0$
• $f_{\underline{a},b,c,d} = (1 \Leftrightarrow 0) = 0$

Storing an ROBDD in memory

- Nodes of the ROBDD are identified by Ids (indices)
- The ROBDD is stored in a table
 T: u → (i,l,h):
 - u: index of node

low

high

- i: index of variable (x_i, i=1...n)
- I: index of the node reachable through edge corresponding to 0
- h: index of the node reachable
 through edge corresponding to 1

u	i	I	h
0			
1			
2	4	1	0
3	4	0	1
4	3	2	3
5	2	4	0
6	2	0	4
7	1	5	6

Auxiliarv

Storing an ROBDD in memory

u	i	I	h
0			
1			
2	4	1	0
3	4	0	1
4	3	2	3
5	2	4	0
6	2	0	4
7	1	5	6

Auxiliary

Auxiliary

Handling ROBDDs 1.

- Defined operations:
 - init(T)
 - Initializes table T
 - Only the terminal nodes **0** and **1** are in the table
 - add(T,i,l,h):u
 - Creates a new node in T with the provided parameters
 - Returns its index u
 - var(T,u):i
 - Returns from T the index i of the node u
 - Iow(T,u):I and high(T,u):h
 - Returns the index I (or h) of the node reachable from the node with index u through the edge corresponding to 0 (or 1)

Auxiliary

Handling ROBDDs 2.

- To look up ROBDD nodes, we use another table H: (i,l,h) \rightarrow u
- Operations:
 - init(H)
 - Initializes an empty H
 - member(H,i,l,h):t
 - Checks if the triple (i,l,h) is in H; t is a Boolean value
 - lookup(H,i,l,h):u
 - Looks up the triple (i,l,h) from table H
 - Returns the index **u** of the matching node
 - insert(H,i,l,h,u)
 - Inserts a new entry into the table

Handling ROBDDs 3.

Creating nodes: Mk(i,l,h)

- Where i is the index of variable, I and h are the branches
- If I=h, i.e. the branches would lead to the same node
 - then we don't need new a node
 - we can return any branch
- If H already contains a triple (i,l,h)
 - then we don't need a new node
 - ⇒ There exists an isomorphic subtree, return that
- If H does not contain such a triple (i,l,h)
 - then we need to create it and return its index

```
Mk(i,l,h) {
  if l=h then
       return 1;
  else if member(H,i,l,h) then
       return lookup(H,i,l,h);
  else {
       u=add(T,i,l,h);
       insert(H,i,l,h,u);
       return u;
   }
```

Auxiliary

Auxiliary

Handling ROBDDs 4.

Building an ROBDD: Build(f) and Build'(t,i) recursive helper function

```
Will traverse variables
Build(f) {
                                           recursively
   init(T); init(H);
   return Build'(f,1);
                             Reached a terminal node
Build'(t,i) {
                              (every variable bound)
   if i>n then
          if t== false then return 0 else return 1
   else {v0 = Build'(t[0/x_i], i+1);
          v1 = Build' (t[1/x_i], i+1);
                                           Recursive building;
          return Mk(i,v0,v1)}~
                                             Mk() will check
                                            isomorphic subtrees
```

Operations on ROBDDs

- Boolean operators can be evaluated directly on ROBDDs
 - Variables of the functions should be the same in the same order
- Equivalence for functions f, t (op is a Booleean operator):
 - 1. f op t = $(x \to f_x, f_{\underline{x}})$ op $(x \to t_x, t_{\underline{x}}) = x \to (f_x \text{ op } t_x), (f_{\underline{x}} \text{ op } t_{\underline{x}})$

Operations on ROBDDs (cont'd)

- Boolean operators can be evaluated directly on ROBDDs
 - Variables of the functions should be the same in the same order
- Equivalence for functions f, t (op is a Booleean operator):
 - 1. f op t = $(x \to f_x, f_{\underline{x}})$ op $(x \to t_x, t_{\underline{x}}) = x \to (f_x \text{ op } t_x), (f_{\underline{x}} \text{ op } t_{\underline{x}})$
- Additional rules (missing variables due to reduction):
 - 2. f op t = (x \rightarrow f_x, f_x) op t = x \rightarrow (f_x op t), (f_x op t)
 - 3. fop t = f op (x \rightarrow t_x,t_x) = x \rightarrow (f op t_x), (f op t_x)
- Based on these rules App(op,i,j) can be defined recursively
 - where i, j: indices of the root nodes of operands
- Drawback: slow
 - worst-case 2ⁿ exponential

Accelerated operation

- Let G(op,i,j) be a cache table that contains the results of App(op,i,j) (these are nodes)
- The four cases of the algorithm:
 - Both nodes are terminal: return a terminal based on the Boolean operation (e.g. $0 \land 1 = 0$)
 - If the variable indices for both operands are the same, then call App(op,i,j) with the 0 branches and with the 1 one branches based on equivalence 1.
 - If one variable index is less, then that node is paired with the 0 and 1 branches of the other based on equivalence 2. or 3.

Auxiliary

Pseudo-code of the operation Auxiliary

```
Apply(op,f,t) {
  init(G);
  return App(op,f,t);
}
App(op,u1,u2) {
  if (G(op,u1,u2) != empty) then return G(op,u1,u2);
  else if (u1 in \{0,1\} and u2 in \{0,1\}) then u = op(u1,u2);
  else if (var(u1) = var(u2)) then
       u=Mk(var(u1), App(op, low(u1), low(u2)),
                     App (op, high (u1), high (u2));
  else if (var(u1) < var(u2)) then
       u=Mk(var(u1), App(op,low(u1),u2),App(op,high(u1),u2));
  else (* if (var(u1) > var(u2)) then *)
       u=Mk(var(u2), App(op,u1,low(u2)), App(op,u1,high(u2)));
  G(op,u1,u2) = u;
  return u;
```

Example: Performing operation (f^t)

Restricting a variable in an ROBDD

Bind variables with constants (e.g. $(\neg x \land y)^{[y=1]} = \neg x$): The value of x_i should be **b** in the ROBDD rooted in **u**

Summary: Model checking with ROBDDs

- Realizing model checking:
 - Model checking algorithm: Operations on sets of states (labeling)
 - Symbolic technique: Instead of sets, use Boolean characteristic functions
 - Efficient implementation: Boolean functions handled as ROBDDs
- Benefits
 - ROBDD is a canonical form (equivalence of functions is easy to check)
 - Algorithms can be accelerated (with caching)
 - Reduced storage requirements (depends on variable ordering!)

Din	Dining philosophers:			
	Number of Philosophers	Size of state space	Number of ROBDD nodes	
	16	4,7 ·10 ¹⁰	747	
	28	4,8 ·10 ¹⁸	1347	

Instead of storing 10¹⁸ states the ROBDD takes ~21kB!